
Problem Statement :

Deploying a multi-container application to Azure Kubernetes Services

Azure Kubernetes Service (AKS)is the quickest way to use Kubernetes on Azure.Azure

Kubernetes Service (AKS)manages your hosted Kubernetes environment, making it quick

and easy to deploy and manage containerized applications without container orchestration

expertise. It also eliminates the burden of ongoing operations and maintenance by

provisioning, upgrading, and scaling resources on demand, without taking your

applications offline. Azure DevOps helps in creating Docker images for faster deployments

and reliability using the continuous build option.

One of the biggest advantage to use AKS is that instead of creating resources in cloud you

can create resources and infrastructure inside Azure Kubernetes Cluster through

Deployments and Services manifest files.

Lab Scenario

This lab uses a Dockerized ASP.NET Core web application -MyHealthClinic(MHC) and is

deployed to aKubernetescluster running onAzure Kubernetes Service (AKS) using Azure

DevOps.

There is amhc-aks.yaml manifest file which consists of definitions to spin up Deployments

and Services such as Load Balancer in the front and Redis Cache in the backend. The

MHC application will be running in the mhc-front pod along with the Load Balancer.

The following image will walk you through all the steps explained in this lab:

Solution/ Architecture

https://azure.microsoft.com/en-us/services/kubernetes-service/

The following tasks will be performed:

•Create an Azure Container Registry (ACR), AKS and Azure SQL server

•Provision the Azure DevOps Team Project with a .NET Core application using the

Azure DevOps Demo Generator tool.

•Configure application and database deployment, using Continuous Deployment

(CD) in the Azure DevOps

•Initiate the build to automatically deploy the application

Technical Details and Implementation of solution

Launch theAzure Cloud Shellfrom the Azure portal and choose Bash .

1.Deploy Kubernetes to Azure, using CLI:

i. Get the latest available Kubernetes version in your preferred region into a bash

variable. Replace<region>with the region of your choosing, for example eastus.

 version=$(az aks get-versions -l <region> --query

'orchestrators[-1].orchestratorVersion' -o tsv)

ii. Create a Resource Group

 az group create --name akshandsonlab --location <region>

iii. Create AKS using the latest version available

 az aks create --resource-group akshandsonlab --name <unique-aks-

cluster-name> --enable-addons monitoring --kubernetes-version
$version --generate-ssh-keys --location <region>

Deploy Azure Container Registry(ACR) : Run the below command to create your own

private container registry using Azure Container Registry (ACR).

 az acr create --resource-group akshandsonlab --name <unique-acr-name>

--sku Standard --location <region>

Authenticate with Azure Container Registry from Azure Kubernetes Service: When

you’re using Azure Container Registry (ACR) with Azure Kubernetes Service (AKS), an

authentication mechanism needs to be established. You can set up the AKS to ACR

integration in a few simple commands with the Azure CLI. This integration assigns the

https://docs.microsoft.com/en-in/azure/cloud-shell/overview

AcrPull role to the managed identity associated to the AKS Cluster. Replace the variables

$AKS_RESOURCE_GROUP, $AKS_CLUSTER_NAME, $ACR_NAME with appropriate values

below and run the command.

 az aks update -n $AKS_CLUSTER_NAME -g $AKS_RESOURCE_GROUP --

attach-acr $ACR_NAME

For more information see document on how to Authenticate with Azure Container

Registry from Azure Kubernetes Service

1.Create Azure SQL server and Database: Create an Azure SQL server.

 az sql server create -l <region> -g akshandsonlab -n <unique-

sqlserver-name> -u sqladmin -p P2ssw0rd1234

Create a database

 az sql db create -g akshandsonlab -s <unique-sqlserver-name> -n

mhcdb --service-objective S0

Challenges in implementing the solution

You will be prompted to authorize this connection with Azure credentials. Disable pop-up

blocker in your browser if you see a blank screen after clicking the OK button, and please

retry the step.

This creates an Azure Resource Manager Service Endpoint, which defines and secures a

connection to a Microsoft Azure subscription, using Service Principal Authentication (SPA).

This endpoint will be used to connect Azure DevOps and Azure.

The Azure portal includes a Kubernetes resource viewer (preview) for easy access to the

Kubernetes resources in your Azure Kubernetes Service (AKS) cluster. Viewing Kubernetes

resources from the Azure portal reduces context switching between the Azure portal and

the kubectl command-line tool, streamlining the experience for viewing and editing your

Kubernetes resources. The resource viewer currently includes multiple resource types, such

as deployments, pods, and replica sets.

The Kubernetes resource view from the Azure portal replaces the AKS dashboard add-on,

which is set for deprecation.

Business Benefit

It also eliminates the burden of ongoing operations and maintenance by provisioning,
upgrading, and scaling resources on demand, without taking your applications offline.
Azure DevOps helps in creating Docker images for faster deployments and reliability using
the continuous build option.

https://docs.microsoft.com/en-us/azure/container-registry/container-registry-auth-aks
https://docs.microsoft.com/en-us/azure/container-registry/container-registry-auth-aks

	Lab Scenario

